The Ultimate Curiosity

Brainstorming is our aim.

The Ultimate Curiosity

Brainstorming is our aim.

Heart Bypass Surgery Explained with Video

Before your surgery you will get general anesthesia. You will be asleep (unconscious) and pain-free during surgery. Once you are unconscious, the heart surgeon will make a 8-10-inch surgical cut (incision) in the middle ...

The Ultimate Curiosity

Brainstorming is our aim.

The Ultimate Curiosity

Brainstorming is our aim.

Thursday 29 March 2012

Myocardial infarction


Myocardial infarction
Classification and external resources

Diagram of a myocardial infarction (2) of the tip of the anterior wall of the heart (anapical infarct) after occlusion (1) of a branch of the left coronary artery (LCA), right coronary artery = RCA.
ICD-10I21-I22
ICD-9410
DiseasesDB8664
MedlinePlus000195
eMedicinemed/1567 emerg/327ped/2520
MeSHD009203
Myocardial infarction (MI) or acute myocardial infarction (AMI), commonly known as a heart attack, results from the interruption ofblood supply to a part of the heart, causing heart cells to die. This is most commonly due to occlusion (blockage) of a coronary arteryfollowing the rupture of a vulnerable atherosclerotic plaque, which is an unstable collection of lipids (cholesterol and fatty acids) andwhite blood cells (especially macrophages) in the wall of an artery. The resulting ischemia (restriction in blood supply) and ensuingoxygen shortage, if left untreated for a sufficient period of time, can cause damage or death (infarction) of heart muscle tissue (myocardium).
Classical symptoms of acute myocardial infarction include sudden chest pain (typically radiating to the left arm or left side of the neck),shortness of breath, nausea, vomiting, palpitations, sweating, and anxiety (often described as a sense of impending doom).Women may experience fewer typical symptoms than men, most commonly shortness of breath, weakness, a feeling of indigestion, and fatigue. Approximately one-quarter of all myocardial infarctions are "silent", that is without chest pain or other symptoms.
Among the diagnostic tests available to detect heart muscle damage are an electrocardiogram (ECG), echocardiography, cardiac MRIand various blood tests. The most often used blood markers are the creatine kinase-MB (CK-MB) fraction and the troponin levels. Immediate treatment for suspected acute myocardial infarction includes oxygen, aspirin, and sublingual nitroglycerin.[3]
Most cases of STEMI (ST elevation MI) are treated with thrombolysis or percutaneous coronary intervention (PCI). NSTEMI (non-ST elevation MI) should be managed with medication, although PCI is often performed during hospital admission. In people who have multiple blockages and who are relatively stable, or in a few emergency cases, bypass surgery may be an option, especially in diabetics.
Ischemic heart disease (which includes myocardial infarction, angina pectoris and heart failure when preceded by myocardial infarction) was the leading cause of death for both men and women worldwide in 2004.[4] Important risk factors are previouscardiovascular disease, older age, tobacco smoking, high blood levels of certain lipids (triglycerides, low-density lipoprotein) and low levels of high density lipoprotein (HDL), diabetes, high blood pressure, obesity, chronic kidney disease, heart failure, excessive alcohol consumption, the abuse of certain drugs (such as cocaine and methamphetamine), and chronic high stress levels.


Classification

There are two basic types of acute myocardial infarction:
  • Transmural: associated with atherosclerosis involving major coronary artery. It can be subclassified into anterior, posterior, inferior, lateral or septal. Transmural infarcts extend through the whole thickness of the heart muscle and are usually a result of complete occlusion of the area's blood supply.
  • Subendocardial: involving a small area in the subendocardial wall of the left ventricle, ventricular septum, or papillary muscles. The subendocardial area is particularly susceptible to ischemia.
In the clinical context, a myocardial infarction can be further subclassified into a ST elevation MI (STEMI) versus a non-ST elevation MI (non-STEMI) based on ECG changes.
The phrase heart attack is sometimes used incorrectly to describe sudden cardiac death, which may or may not be the result of acute myocardial infarction. A heart attack is different from, but can be the cause of cardiac arrest, which is the stopping of the heartbeat, and cardiac arrhythmia, an abnormal heartbeat. It is also distinct from heart failure, in which the pumping action of the heart is impaired; however severe myocardial infarction may lead to heart failure.
A 2007 consensus document classifies myocardial infarction into five main types:
  • Type 1 – Spontaneous myocardial infarction related to ischaemia due to a primary coronary event such as plaque erosion and/or rupture, fissuring, or dissection
  • Type 2 – Myocardial infarction secondary to ischaemia due to either increased oxygen demand or decreased supply, e.g. coronary artery spasm, coronary embolism, anaemia, arrhythmias, hypertension, or hypotension
  • Type 3 – Sudden unexpected cardiac death, including cardiac arrest, often with symptoms suggestive of myocardial ischaemia, accompanied by new ST elevation, or new LBBB, or evidence of fresh thrombus in a coronary artery by angiography and/or at autopsy, but death occurring before blood samples could be obtained, or at a time before the appearance of cardiac biomarkers in the blood
  • Type 4 – Associated with coronary angioplasty or stents:
    • Type 4a – Myocardial infarction associated with PCI
    • Type 4b – Myocardial infarction associated with stent thrombosis as documented by angiography or at autopsy
  • Type 5 – Myocardial infarction associated with CABG


Signs and symptoms


Rough diagram of pain zones in myocardial infarction; dark red: most typical area, light red: other possible areas; view of the chest

Back view
The onset of symptoms in myocardial infarction (MI) is usually gradual, over several minutes, and rarely instantaneous. Chest pain is the most common symptom of acute myocardial infarction and is often described as a sensation of tightness, pressure, or squeezing. Chest pain due to ischemia (a lack of blood and hence oxygen supply) of the heart muscle is termed angina pectoris. Pain radiates most often to the left arm, but may also radiate to the lower jaw, neck, right arm,back, and epigastrium, where it may mimic heartburn. Levine's sign, in which the patient localizes the chest pain by clenching their fist over the sternum, has classically been thought to be predictive of cardiac chest pain, although a prospective observational study showed that it had a poor positive predictive value.
Shortness of breath (dyspnea) occurs when the damage to the heart limits the output of the left ventricle, causing left ventricular failureand consequent pulmonary edema. Other symptoms include diaphoresis (an excessive form of sweating), weakness, light-headedness, nausea, vomiting, and palpitations. These symptoms are likely induced by a massive surge of catecholamines from thesympathetic nervous system which occurs in response to pain and the hemodynamic abnormalities that result from cardiac dysfunction. Loss of consciousness (due to inadequate cerebral perfusion and cardiogenic shock) and sudden death (frequently due to the development of ventricular fibrillation) can occur in myocardial infarctions.
Women and older patients report atypical symptoms more frequently than their male and younger counterparts. Women also report more numerous symptoms compared with men (2.6 on average vs 1.8 symptoms in men). The most common symptoms of MI in women include dyspnea (shortness of breath), weakness, and fatigue. Fatigue, sleep disturbances, and dyspnea have been reported as frequently occurring symptoms that may manifest as long as one month before the actual clinically manifested ischemic event. In women, chest pain may be less predictive of coronary ischemia than in men.
Approximately one-fourth of all myocardial infarctions are silent, without chest pain or other symptoms. These cases can be discovered later on electrocardiograms, using blood enzyme tests or at autopsy without a prior history of related complaints. A silent course is more common in the elderly, in patients with diabetes mellitus and after heart transplantation, probably because the donorheart is not fully innervated by the nervous system of the recipient. In diabetics, differences in pain threshold, autonomic neuropathy, and psychological factors have been cited as possible explanations for the lack of symptoms.
Any group of symptoms compatible with a sudden interruption of the blood flow to the heart are called an acute coronary syndrome.
The differential diagnosis includes other catastrophic causes of chest pain, such as pulmonary embolism, aortic dissection, pericardial effusion causing cardiac tamponade, tension pneumothorax, and esophageal rupture. Other non-catastrophic differentials includegastroesophageal reflux and Tietze's syndrome.

Pathophysiology


A myocardial infarction occurs when an atherosclerotic plaque slowly builds up in the inner lining of a coronary arteryand then suddenly ruptures, causing catastrophic thrombus formation, totally occluding the artery and preventing blood flow downstream.

Drawing of the heart showing anterior left ventricle wall infarction
Acute myocardial infarction refers to two subtypes of acute coronary syndrome, namely non-ST-elevated myocardial infarction and ST-elevated myocardial infarction, which are most frequently (but not always) a manifestation of coronary artery disease. The most common triggering event is the disruption of an atherosclerotic plaque in an epicardial coronary artery, which leads to a clotting cascade, sometimes resulting in total occlusion of the artery. Atherosclerosis is the gradual buildup of cholesterol and fibrous tissue in plaques in the wall of arteries (in this case, the coronary arteries), typically over decades. Blood stream column irregularities visible on angiography reflect artery lumen narrowing as a result of decades of advancing atherosclerosis. Plaques can become unstable, rupture, and additionally promote a thrombus (blood clot) that occludes the artery; this can occur in minutes. When a severe enough plaque rupture occurs in the coronary vasculature, it leads to myocardial infarction (necrosis of downstream myocardium).
If impaired blood flow to the heart lasts long enough, it triggers a process called the ischemic cascade; the heart cells in the territory of the occluded coronary artery die (chiefly through necrosis) and do not grow back. A collagen scar forms in its place. Recent studies indicate that another form of cell death called apoptosis also plays a role in the process of tissue damage subsequent to myocardial infarction. As a result, the patient's heart will be permanently damaged. This myocardial scarring also puts the patient at risk for potentially life threatening arrhythmias, and may result in the formation of a ventricular aneurysm that can rupture with catastrophic consequences.
Injured heart tissue conducts electrical impulses more slowly than normal heart tissue. The difference in conduction velocity between injured and uninjured tissue can trigger re-entry or a feedback loop that is believed to be the cause of many lethal arrhythmias. The most serious of these arrhythmias is ventricular fibrillation (V-Fib/VF), an extremely fast and chaotic heart rhythm that is the leading cause of sudden cardiac death. Another life-threatening arrhythmia is ventricular tachycardia (V-Tach/VT), which may or may not cause sudden cardiac death. However, ventricular tachycardia usually results in rapid heart rates that prevent the heart from pumping blood effectively.Cardiac output and blood pressure may fall to dangerous levels, which can lead to further coronary ischemia and extension of the infarct.
The cardiac defibrillator is a device that was specifically designed to terminate these potentially fatal arrhythmias. The device works by delivering an electrical shock to the patient in order to depolarize a critical mass of the heart muscle, in effect "rebooting" the heart. This therapy is time dependent, and the odds of successful defibrillation decline rapidly after the onset of cardiopulmonary arrest.