artwork: CERN |
That's one of the most-asked, most-hotly pursued questions in physics today. Many of the experiments circulating in the world's particle accelerators are looking into the mechanism that gives rise to mass. Scientists at CERN, as well as at Fermilab in Illinois, are hoping to find what they call the "Higgs boson." Higgs, they believe, is a particle, or set of particles, that might give others mass.
The idea of one particle giving another mass is a bit counter-intuitive... Isn't mass an inherent characteristic of matter? If not, how can one entity impart mass on all the others by simply floating by and interacting with them?
artwork: CERN Click on the image above for a helpful cartoon explanation of the Higgs Mechanism. |
photo: CERN Scientists at CERN use the enormous ALEPH detector in their search for the Higgs particle. |
Electromagnetism describes how particles interact with photons, tiny packets of electromagnetic radiation. In a similar way, the weak force describes how two other entities, the W and Z particles, interact with electrons, quarks, neutrinos and others. There is one very important difference between these two interactions: photons have no mass, while the masses of W and Z are huge. In fact, they are some of the most massive particles known.
The first inclination is to assume that W and Z simply exist and interact with other elemental particles. But for mathematical reasons, the giant masses of W and Z raise inconsistencies in the Standard Model. To address this, physicists postulate that there must be at least one other particle -- the Higgs boson.
The simplest theories predict only one boson, but others say there might be several. In fact, the search for the Higgs particle(s) is some of the most exciting research happening, because it could lead to completely new discoveries in particle physics. Some theorists say it could bring to light entirely new types of strong interactions, and others believe research will reveal a new fundamental physical symmetry called "supersymmetry."
photo: CERN CERN scientists were unsure whether these events recorded by the ALEPH detector indicated the presence of a Higgs boson. Check out the links listed below for the latest information on the search for the Higgs Boson. |
In August 2000, physicists working at CERN's LEP saw traces of particles that might fit the right pattern, but the evidence is still inconclusive. LEP was closed down in the beginning of November, 2000, but the search continues at Fermilab in Illinois, and will pick up again at CERN when the LHC (Large Hadron Collider) begins experiments in 2005.