At one time or another, humans have turned to just about every viable option on the planet for new means of destroying one another. We've leveled forests, plundered the elements and diverted religion, philosophy, science and art to fuel humanity's desire for bloodshed. Along the way, we've even weaponized some of nature's most formidable viral, bacterial and fungal foes.
The use of biological weapons, or bioweapons, dates back to the ancient world. As early as 1,500 B.C. the Hittites of Asia Minor recognized the power of contagions and sent plague victims into enemy lands. Armies, too, have long understood the power of bioweapons, catapulting diseased corpses into besieged fortresses and poisoning enemy wells. Some historians even argue that the 10 biblical plagues Moses called down against the Egyptians may have been more of a concentrated campaign of biological warfare rather than the acts of a vengeful god [source: NPR].
Since those early days, advances in medical science have led to a vastly improved understanding of harmful pathogens and the way our immune systems deal with them. But while these advancements have led to vaccinations and cures, they have also led to the further weaponization of some of the most destructive biological agents on the planet.
The first half of the 20th century saw the use of the biological weapon anthrax by both the Germans and Japanese, as well as the subsequent development of biological weapons programs in nations such as the United States, the United Kingdom and Russia. Today, biological weapons are outlawed under 1972's Biological Weapons Convention and the Geneva Protocol. But while a number of nations have long destroyed their stockpiles of bioweapons and ceased research into their proliferation, the threat remains.
In this article, we'll examine some of the leading bioweapon threats, as well as what the future of biological warfare may have in store for us all.
The term "biological weapon" typically summons mental images of sterile government labs, hazmat suits and test tubes full of brightly colored liquid apocalypse. Historically, however, biological weapons have often taken much more mundane forms: a wandering exile, paper bags full of plague-infested fleas or even, during the1763 French and Indian War, a simple blanket.
At the orders of Cmdr. Sir Jeffrey Amherst, British forces infamously distributed smallpox-infected blankets to Native American tribes in Ottawa. The native inhabitants of the Americas were particularly susceptible to the illness since, unlike their European invaders, they hadn't encountered smallpox before and lacked any degree of immunity to it. The disease cut through the tribes like wildfire [source: Yount].
Smallpox is caused by the variola virus. The most common form of the disease has a 30 percent mortality rate [source: CDC]. Signs of smallpox include high fevers, body aches, and a rash that develops from fluid-filled bumps and scabs to permanent, pitted scars. The disease predominantly spreads through direct contact with an infected person's skin or bodily fluids, but also can be spread though the air in close, confined environments.
In 1967, the World Health Organization (WHO) spearheaded an effort to eradicate smallpox through mass vaccinations. As a result, 1977 marked the last naturally occurring case of smallpox. The disease was effectively eliminated from the natural world, but laboratory copies of smallpox still exist. Both Russia and the United States possess WHO-approved stores, but as smallpox played a role in several nations' bioweapons programs, it's unknown how many secret stockpiles still exist.
The CDC classifies smallpox as a Category A biological weapon due to its high mortality rate and the fact that it can be transmitted through the air. While a smallpox vaccine exists, typically only medical and military personnel undergo vaccination -- meaning the rest of the population is very much at risk if smallpox were unleashed as a weapon. How might the virus be released? Probably in aerosol form or even in the old-fashioned way: by sending an infected individual directly into the target area.
The method for unleashing a biological weapon doesn't have to be flashy, however. Consider how much press our next bioweapon received, all with a few postage stamps.
Remi Benali/Getty Images News/Getty Images
Since those early days, advances in medical science have led to a vastly improved understanding of harmful pathogens and the way our immune systems deal with them. But while these advancements have led to vaccinations and cures, they have also led to the further weaponization of some of the most destructive biological agents on the planet.
The first half of the 20th century saw the use of the biological weapon anthrax by both the Germans and Japanese, as well as the subsequent development of biological weapons programs in nations such as the United States, the United Kingdom and Russia. Today, biological weapons are outlawed under 1972's Biological Weapons Convention and the Geneva Protocol. But while a number of nations have long destroyed their stockpiles of bioweapons and ceased research into their proliferation, the threat remains.
In this article, we'll examine some of the leading bioweapon threats, as well as what the future of biological warfare may have in store for us all.
Bioweapon 10: Smallpox
MPI/Hulton Archive/Getty Images
At the orders of Cmdr. Sir Jeffrey Amherst, British forces infamously distributed smallpox-infected blankets to Native American tribes in Ottawa. The native inhabitants of the Americas were particularly susceptible to the illness since, unlike their European invaders, they hadn't encountered smallpox before and lacked any degree of immunity to it. The disease cut through the tribes like wildfire [source: Yount].
Smallpox is caused by the variola virus. The most common form of the disease has a 30 percent mortality rate [source: CDC]. Signs of smallpox include high fevers, body aches, and a rash that develops from fluid-filled bumps and scabs to permanent, pitted scars. The disease predominantly spreads through direct contact with an infected person's skin or bodily fluids, but also can be spread though the air in close, confined environments.
In 1967, the World Health Organization (WHO) spearheaded an effort to eradicate smallpox through mass vaccinations. As a result, 1977 marked the last naturally occurring case of smallpox. The disease was effectively eliminated from the natural world, but laboratory copies of smallpox still exist. Both Russia and the United States possess WHO-approved stores, but as smallpox played a role in several nations' bioweapons programs, it's unknown how many secret stockpiles still exist.
The CDC classifies smallpox as a Category A biological weapon due to its high mortality rate and the fact that it can be transmitted through the air. While a smallpox vaccine exists, typically only medical and military personnel undergo vaccination -- meaning the rest of the population is very much at risk if smallpox were unleashed as a weapon. How might the virus be released? Probably in aerosol form or even in the old-fashioned way: by sending an infected individual directly into the target area.
The method for unleashing a biological weapon doesn't have to be flashy, however. Consider how much press our next bioweapon received, all with a few postage stamps.