Is a Broad Scientific Discipline
Biochemistry is the study of the structure, composition, and chemical reactions of substances in living systems. Biochemistry emerged as a separate discipline when scientists combined biology with organic, inorganic, or physical chemistry and began to study such topics as how living things obtain energy from food, the chemical basis of heredity, and what fundamental changes occur in disease. Biochemistry includes the sciences of molecular biology; immunochemistry; neurochemistry; and bioinorganic, bioorganic, and biophysical chemistry.Has a Wide Range of Applications
Biochemistry is applied to medicine, dentistry, and veterinary medicine. In food science, biochemists research ways to develop abundant and inexpensive sources of nutritious foods, determine the chemical composition of foods, develop methods to extract nutrients from waste products, or invent ways to prolong the shelf life food products. In agriculture, biochemists study the interaction of herbicides with plants. They examine the structure-activity relationships of compounds, determine their ability to inhibit growth, and evaluate the toxicological effects on surrounding life.Biochemistry spills over into pharmacology, physiology, microbiology, and clinical chemistry. In these areas, a biochemist may investigate the mechanism of a drug action; engage in viral research; conduct research pertaining to organ function; or use chemical concepts, procedures, and techniques to study the diagnosis and therapy of disease and the assessment of health.
Work in the field of biochemistry is often related to toxicology. Rogene Henderson, senior scientist and supervisor of the Biochemical Toxicology Group at Lovelace Respiratory Research Institute, does research to understand ways in which organic compounds in the body are changed by enzymes into toxic metabolites. Henderson focuses on determining the health effects of inhaled pollutants. She develops chemical analytical techniques to detect pollutants and their metabolites in body tissues and fluids, uses mathematics to describe the relationships between the air and body concentrations of these chemicals or their metabolites, and determines how these concentrations change with time.
Is Interacting With Scientists from Many Disciplines
Real-world problems seldom come neatly packaged for one discipline to study, says Henderson. For example, our institute collaborated with the Department of Energy to investigate the health effects of an increased number of diesel-powered cars on the road. To address this problem, we needed engineers, aerosol scientists, veterinarians, analytical chemists, pathologists, and mathematicians as well as biochemists to work as a team. In another scenario, Henderson explains that she often interacts with people outside of her organization, for example, those who sponsor her work. She adds, Much of my work is related to regulation of air pollutants, and the research that I do is often audited by those who have an interest in the regulatory process.David Green, senior research investigator in cardiovascular drug discovery, echoes the sentiment that interaction with others is an integral part of the job. Green specializes in enzymology; he identifies and characterizes enzymes as drug discovery targets. Green states, My projects vary, but a common element is working with people from different disciplines physiology or medicinal chemistry, for example to find a compound that can be used in clinical trials. Green says that he finds interacting with other scientists the best part of his job.
The underlying principle of biochemistry is understanding the structure of living systems. By understanding the structure of something, a scientist has a vital start to understanding its function. As an associate professor of chemistry at the Massachusetts Institute of Technology, Jamie Williamson undertook the study of the structures of virus-producing proteins in order to supply other researchers with the information needed to develop ways (drugs) to control the action of the proteins and, hence, the virus.
Williamson says, This exchange of information is one of the most gratifying things about being a researcher. The information and insight that you possess makes you a valuable scientist. So, the more you share your information, the better. Green explains, The desire to discover truths about nature and provide products that can improve the quality of peoples lives is what has driven me in my work.
Studying the cell and chemistry of life results in valuable contributions being made in medicine, industry, and society. This knowledge is used in fighting illness and improving the quality of life, making the field interesting, challenging, rewarding, and full of opportunity. Williamson explains, Biochemistry is a vast, huge field. Although we already understand much about how cells work, we really have just scratched the surface. The field is wide open.